ADVANCED MATHEMATICS
Final Exam - June 2013
Name:
NIU: \qquad Group: \qquad
Grade:

Instructions: The exam consists of six questions. You have two hours to give a reasoned answer to all the exercises. Write the quiz entirely in ink.

01 Determine for which values of the parameter $a \in \mathbb{R}$ the matrix A is diagonalizable.

$$
A=\left(\begin{array}{lll}
0 & 0 & a \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

2 Determine whether the following statement is true. If it is, provide a reasoned argument. If it is not, show a counterexample: "If A is a matrix whose determinant is equal to zero, then A is NOT diagonalizable."

3 Solve the system of difference equations

$$
X_{t+1}=A X_{t}
$$

where A is the matrix of Exercise 1 when $a=4$. Is this system globally asymptotically stable? Is there any initial condition X_{0} such that the solution converges?

4 Solve the following differential equation:

$$
x^{\prime}=-\frac{2 t+3 x}{3 t+2 x},
$$

where $x(1)=1$.

5 Obtain the solutions of the following differential equation:

$$
x^{\prime \prime \prime}-3 x^{\prime \prime}+3 x^{\prime}-x=t^{2}
$$

56 Obtain the solution to the following system:

$$
X^{\prime}=\left(\begin{array}{cc}
-3 & 0 \\
0 & 1
\end{array}\right) X+\binom{e^{t}}{1}
$$

Instructions: The exam consists of six questions. You have two hours to give a reasoned answer to all the exercises. Write the quiz entirely in ink.

1 Determine for which values of the parameter $a \in \mathbb{R}$ the matrix A is diagonalizable.

$$
A=\left(\begin{array}{lll}
0 & 0 & a \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Solution. The eigenvalues of A are $\sigma(A)=\{1,+\sqrt{a},-\sqrt{a}\}$. If $a \in \mathbb{R}_{\text {_ }}$ then the characteristic polynomial has complex roots and A is not diagonalizable. If $a \in \mathbb{R}_{+} \backslash\{0,1\}$ then the three roots are real and different each other and A is diagonalizable. We study the other two cases:
(a) If $a=0$. Then $\sigma(A)=\{1,0\}$ with $m(1)=1$ and $m(0)=2$. On the other hand, $\operatorname{dim} S(O)=$ $3-\operatorname{rank}\left(A-0 \cdot 1_{3}\right)=3-2=1$. Since the dimension of the eigenspace and the multiplicity do not coincide, the matrix A is not diagonalizable.
(b) If $a=1$. Then $\sigma(A)=\{1,-1\}$ with $m(1)=2$ and $m(-1)=1$. We compute the dimensions of the eigenspaces $\operatorname{dim} S(1)=3-\operatorname{rank}\left(A-1 \cdot I_{3}\right)=3-2=1$ and $\operatorname{dim} S(-1)=3-\operatorname{rank}\left(A+1 \cdot I_{3}\right)=3-2=1$. Since $\operatorname{dim} S(1) \neq m(1)$, the matrix A is not diagonalizable.

2 Determine whether the following statement is true. If it is, provide a reasoned argument. If it is not, show a counterexample: "If A is a matrix whose determinant is equal to zero, then A is NOT diagonalizable."

Solution. The statement is false. The following matrix (the null matrix) has a determinant equal to zero and it is diagonalizable (indeed, it is diagonal).

$$
A=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

3 Solve the system of difference equations

$$
X_{t+1}=A X_{t}
$$

where A is the matrix of Exercise 1 when $a=4$. Is this system globally asymptotically stable? Is there any initial condition X_{0} such that the solution converges?

Solution. When $a=4, \sigma(A)=\{1,2,-2\}$, and $S(1)=<(0,1,0)>, S(2)=<(2,3,1)>$ and $S(-2)=<(-6,1,3)>$. The system is homogeneous, and therefore

$$
x_{t}=A_{0} 1^{t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+A_{1} 2^{t}\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)+A_{2}(-2)^{t}\left(\begin{array}{c}
-6 \\
1 \\
3
\end{array}\right)
$$

Since not all the eigenvalues are smaller than 1, the system is not globally asymptotically stable. On the other hand, the solution will converge for an initial condition X_{0} only if $A_{1}=A_{2}=0$

$$
\left(\begin{array}{l}
a \\
\beta \\
y
\end{array}\right)=x_{0}=A_{0} 1\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+0\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right)+0\left(\begin{array}{c}
-6 \\
1 \\
3
\end{array}\right) \Leftrightarrow a=\gamma=0 .
$$

For $X_{0}=(0,1,0)$, for example, the solution converges.
4 Solve the following differential equation:

$$
x^{\prime}=-\frac{2 t+3 x}{3 t+2 x},
$$

where $x(1)=1$.
Solution. It is an exact equation whose canonical form is $(2 t+3 x) d t+(2 x+3 t) d x=0$ In this case, $P(t, x)=2 t+3 x$ and $Q(t, x)=2 x+3 t$. We check the condition to be exact:

$$
\frac{\partial P}{\partial x}=3=\frac{\partial Q}{\partial t} .
$$

- Let $F(t, x)$ be the solution of the equation we are looking for.
- Impose that

$$
\frac{\partial F(t, x)}{\partial t}=P(t, x) \Rightarrow \frac{\partial F(t, x)}{\partial t}=2 t+3 x
$$

by integrating both sides with respect to t, we can isolate $F(t, x)$.

$$
F(t, x)=t^{2}+h(x)
$$

- Now, impose that

$$
\frac{\partial F(t, x)}{\partial x}=Q(t, x) \Leftrightarrow h^{\prime}(x)=2 x+3 t
$$

- To obtain $h(x)$, simply integrate.

$$
h(x)=x^{2}+3 t x .
$$

- Substitute $h(x)$ in the expression of Step 2, and then:

$$
F(t, x)=t^{2}+x^{2}+3 t x .
$$

- The solution to the exact equation is given in implicit form:

$$
t^{2}+x^{2}+3 t x=c
$$

Now, we impose the initial condition $x(1)=1$ to obtain that $C=5$. Therefore, the solution is $t^{2}+x^{2}-3 t x=5$.

Obtain the solutions of the following differential equation:

$$
x^{\prime \prime \prime}-3 x^{\prime \prime}+3 x^{\prime}-x=t^{2}
$$

Solution. The roots of the characteristic polynomial are $r=1$ with $m(1)=3$. Then,

$$
x^{h}(t)=A_{0} e^{t}+A_{1} t e^{t}+A_{2} t^{2} e^{t}
$$

Since $b(t)=t^{2}$ is a polynomial of degree 2, we propose $x(t)=C_{0}+C_{1} t+C_{2} t^{2}$. Taking derivatives and substituting we get that $C_{0}=-12, C_{1}=-6$, and $C_{2}=-1$. And the,

$$
x^{p}(t)=-12-6 t-t^{2}
$$

Finally

$$
x(t)=A_{0} e^{t}+A_{1} t e^{t}+A_{2} t^{2} e^{t}-12-6 t-t^{2}
$$

6 Obtain the solution to the following system:

$$
X^{\prime}=\left(\begin{array}{cc}
-3 & 0 \\
0 & 1
\end{array}\right) X+\binom{e^{t}}{1}
$$

Solution. The matrix A of the system is already diagonal, hence, D is the A and $P=P^{-1}=I_{2}$, which implies that the solution to the associated homogeneous system is:

$$
x^{h}(t)=K_{0} e^{-3 t}\binom{1}{0}+K_{1} e^{t}\binom{0}{1}
$$

In order to obtain a particular solution, we solve the system

$$
K_{0}^{\prime} e^{-3 t}\binom{1}{0}+K_{1}^{\prime} e^{t}\binom{0}{1}=\binom{e^{t}}{1} \equiv K_{0}^{\prime}=e^{4 t} \text { and } K_{1}^{\prime}=e^{-t} \equiv K_{0}=\frac{1}{4} e^{4 t} \text { and } K_{1}=-e^{-t}
$$

Then, a particular solution is

$$
X^{P}(t)=\frac{1}{4} e^{4 t} e^{-3 t}\binom{1}{0}+-e^{-t} e^{t}\binom{0}{1}=\binom{\frac{1}{4} e^{t}}{-1}
$$

Finally,

$$
X(t)=K_{0} e^{-3 t}\binom{1}{0}+K_{1} e^{t}\binom{0}{1}+\binom{\frac{1}{4} e^{t}}{-1}
$$

